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1 Fluctuation Conductivity Above Tc

The resistance vs. temperature curves show precursor e�ects as the transition
temperature is approached from above. The resistance is observed to drop at
temperatures above Tc, to a degree that depends on the dimensionality of the
material (0D, 1D, 2D, 3D). We treat the conductivity above Tc as a linear com-
bination of mean-�eld conductivity (entirely due to normal state physics) and
�uctuation conductivity (due to superconducting �uctuations):
σ = σMF + σfluc.
The idea is that the material borrows kBT of energy from the thermal bath tem-
porarily and creates a superconducting �uctuation of limited size and limited
lifetime somewhere in the material. While this �uctuation exists it creates a
small zero-resistance pathway for current, leading to a drop in global resistance
of the sample. These �uctuations occur rapidly and in many locations around
the sample, leading to clearly measurable e�ects when measured on the time
scales of seconds.

We will work with the Fourier transform of 〈|ψ|2〉. Consider the GL free
energy expansion above Tc (α > 0), where the �uctuating order parameter is
expected to be small. In this case we can ignore the |ψ|4 term, and we will take
the vector potential and external �elds to be zero. This leaves a free energy
expansion of,

f = α|ψ|2 + ~2

2m∗ (5ψ)2.
Now take the Fourier transform of ψ,

ψ(−→r ) =
∑
k ψke

i
−→
k ·−→r . This gives for the free energy di�erence of the sample,

F =
∫
fdV =

∑
k

{
α+ ~2k2

2m∗

}
|ψk|2.

Now assume equipartition of energy to each degree-of-freedom of the �uctu-
ating order parameter. This means that every term in the sum on k will have
on average kBT of energy, or in other words,

〈|ψk|2〉 = kBT/α
1+k2ξ2GL

1
V , where we have used the fact that ξ2

GL = ~2

2m∗α .

The k-dependence suppresses the short wavelength �uctuations. In fact we
should introduce a cuto� in the k-sum because wavenumbers larger than 1/ξGL
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cannot be expected to contribute.

How big are the areas that �uctuate in to the superconducting state above
Tc? Below Tc the order parameter is assumed to be long-range phase coher-
ent. Above Tc one can calculate the two-point correlation function g(−→r ,−→r ′) ≡
〈ψ∗(−→r )ψ(−→r ′)〉, which is found to be g(−→r ,−→r ′) = m∗kBT

2π~2
e−R/ξGL(T )

R , where
R = |−→r − −→r ′| (see Tinkham p. 300). The typical size of the �uctuation is

on the order of the GL coherence length above Tc, with ξ
2
GL = ~2

2m∗α and α > 0.

2 Brief Introduction to Time-Dependent Ginzburg-
Landau Theory (TDGL)

Above Tc the equilibrium value of the order parameter is zero, ψ0 = 0. Any
�uctuation results in a non-zero order parameter, as we assume ψ = ψ0 + δψ.
TDGL says that such a �uctuation will relax back to zero exponentially in
time: dψ

dt = − 1
τ0
ψ. The result for the k = 0 momentum relaxation time is

τ0 = π~
8kB(T−Tc) = 3ps−K

(T−Tc) . (This result is derived for gapless superconductors

by M. Cyrot, Rep. Prog. Phys. 36, 103 (1973).)
Now consider the GL equation corresponding to the free energy expansion given
above,

αψ − ~2

2m∗ 52 ψ = 0, or after dividing through by α,
ξ2
GL 52 ψ − ψ = 0. The TDGL generalization of this equation is,
dψ
dt = − 1

τ0
(1− ξ2

GL52)ψ.
Generalize the Fourier transform of the order parameter to a time-dependent
version,

ψ(−→r , t) =
∑
k ψke

i
−→
k ·−→r e−t/τk . Putting this into the generalized TDGL equation

yields,
τk = τ0

1+k2ξ2GL
. This shows that short wavelength �uctuations will decay more

quickly.

3 Fluctuation Conductivity in TDGL

Tinkham derives the �uctuation conductivity above Tc using the Kubo for-
malism. Here we use a simple TDGL argument. In analogy with the Drude

expression for the mean �eld conductivity, σn = ne2τ
m , let's try,

σfluc = (e∗)2

m∗

∑kcutoff
k 〈|ψk|2〉 τk2 , where the factor of 2 comes from the fact that

ψ2
k decays twice as fast as ψk.

Substituting in the results above yields,

σfluc = (e∗)2

~2

ξ2GL
V kBTτ0

∑kcutoff
k

1
(1+ξ2GLk

2)2
. The outcome of the sum (turned

in to an integral) depends on the dimensionality d of the system.
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The results are,

d = 3: σfluc3D = e2

~ξGL(0) ( T
T−Tc )1/2 ×

{
1/4 This approximation
1/32 Kubo

where we write ξGL(T ) = ξGL(0)
√

T
T−Tc .

d = 2: σfluc2D = e2

~t (
T

T−Tc )×
{

1/8 This approximation
1/16 Kubo

where t is the �lm thickness.

d = 1: σfluc1D = e2

~ ( T
T−Tc )3/2 ξGL(0)

Ac
×
{

1/8 This approximation
π/16 Kubo

where Ac is the cross sectional area of the 1D wire.

Note that in all cases the scale of the �uctuation conductivity is set by

the quantum of conductance e2

~ = 243.3µS. Alternatively one can write ~
e2 =

4.11kΩ.
The dc �uctuation conductivity diverges at Tc more strongly in lower dimen-
sionality as
σflucdD ∝ 1

(T−Tc)(4−d)/2
.

The class web site shows �uctuation conductivity data from 1 and 2-dimensional
materials.

4 The Kosterlitz-Thouless Phase Transition for
2D Superconductors

One does not have true long-range order (LRO) in 1 or 2 dimensions. The
3D BCS ground state is a coherent state of Cooper pairs that maintains phase
coherence over e�ectively in�nite distance. In lower dimensions, the phase co-
herence is less strong. This is quanti�ed by the two-point correlation function
for the GL order parameter. In 3D one has 〈ψ∗(−→r )ψ(−→r ′)〉 ∼ constant as

|
−→
R | = |−→r −−→r ′| → ∞. Above Tc one �nds,
〈ψ∗(−→r )ψ(−→r ′)〉 ∼ e−R/ξN .
In 2D at low temperature one �nds, 〈ψ∗(−→r )ψ(−→r ′)〉 ∼ 1

Rη(T ) . This di�erence
between the exponential decay above Tc to a power-law decay at low temper-
atures implies a phase transition. This is the famous �KT� transition that is
seen in 2D Coulomb gases and in vortices in thin �lms of super�uid 4He. The
original reference is J. Phys. C 6, 181 (1973).

The theory examines the lowest energy excitations out of the ground state.
Individual vortices have an energy that scales logarithmically with the size of the
sample. Bound Vortex/Anti-vortex (V/AV) pairs have a much smaller energy,
hence they dominate the low temperature properties. As temperature increases,
there is an entropic advantage to de-pairing the V/AV pairs and creating un-
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bound free vortices. This precipitates the KT transition at TKT . Below TKT
there is zero resistance in the limit of current going to zero. In other words the
critical current is zero! Above TKT there is �nite resistance even in the limit as
the current goes to zero.

5 KT in 2D Superconductors: Vortex and V/AV
Energies

Vortices in 2D superconductors are similar to those discussed before in 3D su-
perconductors except for the tails. Instead of having the currents falling o�
exponentially with distance for r > λ in 3D, one instead has a surface current
given by,

−→
Ks(r) = θ̂ ×

{
Φ0

2π
d/λ2

r r << 2λ2/d
Φ0

2π
2
r2 r >> 2λ2/d

See the paper by Pearl, Appl. Phys. Lett. 5, 65 (1964). The key things to note
are the 1/r2 drop-o� of the surface currents with distance, and the crossover
length scale, called the perpendicular penetration depth λ⊥ = 2λ2/d, where d is
the �lm thickness. The crossover length scale can be macroscopic in size in low
carrier density and/or disordered superconducting �lms of small (nm) thickness.
Thus the 1/r �core� of the vortices can extend over macroscopic distances! The
vortices now act like Coulomb charges interacting in a 2D metal.

The energy of a free vortex can be calculated by ignoring the vortex core
(GL κ→∞) and considering only the kinetic energy of the currents as,

W1 = πn∗s,2D
~2

m∗ ln R
r0
, where n∗s,2D = nsL is the 2D super�uid density, ns is

the 3D super�uid density, L is the length of the vortex (on the order of the
�lm thickness), r0 is the microscopic length scale where the current density ap-
proaches the de-pairing value (we expect r0 ∼ ξGL), and R is the sample size,
where it is assumed that λ⊥ is much greater than the sample size. The energy
of a single isolated vortex scales with the system size, making it very expensive!

Contrast this with the case of a V/AV pair at some distance r apart. Far
away (R >> r) the �ow �elds of the two vortices cancel to good approximation,
making the object appear �neutral� from far away. The currents are strong only
within r, giving rise to a total energy of just,

W2 = 2πn∗s,2D
~2

m∗ ln r
r0
.

Because W2 << W1 the V/AV excitations are the dominant excitations at low
temperature in the 2D superconductor.
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