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1 Fluctuation Conductivity Above T,

The resistance vs. temperature curves show precursor effects as the transition
temperature is approached from above. The resistance is observed to drop at
temperatures above T, to a degree that depends on the dimensionality of the
material (0D, 1D, 2D, 3D). We treat the conductivity above T, as a linear com-
bination of mean-field conductivity (entirely due to normal state physics) and
fluctuation conductivity (due to superconducting fluctuations):

O=0MF +0.fluc_

The idea is that the material borrows kpT of energy from the thermal bath tem-
porarily and creates a superconducting fluctuation of limited size and limited
lifetime somewhere in the material. While this fluctuation exists it creates a
small zero-resistance pathway for current, leading to a drop in global resistance
of the sample. These fluctuations occur rapidly and in many locations around
the sample, leading to clearly measurable effects when measured on the time
scales of seconds.

We will work with the Fourier transform of (|¢)|?). Consider the GL free
energy expansion above T, (a > 0), where the fluctuating order parameter is
expected to be small. In this case we can ignore the || term, and we will take
the vector potential and external fields to be zero. This leaves a free energy
expansion of,

f =l + g (V1)
Now take the Fou_fier transform of 1,
Y(7) = Sy ret® 7. This gives for the free energy difference of the sample,

F=[fdv =3, {a+ 55 .

Now assume equipartition of energy to each degree-of-freedom of the fluctu-
ating order parameter. This means that every term in the sum on k will have
on average kT of energy, or in other words,

(lvel?) = liifggL +, where we have used the fact that &2, = %
The k-dependence suppresses the short wavelength fluctuations. In fact we
should introduce a cutoff in the k-sum because wavenumbers larger than 1/,




cannot be expected to contribute.

How big are the areas that fluctuate in to the superconducting state above
T.? Below T, the order parameter is assumed to be long-range phase coher-
ent. Above T, one can calculate the two-point correlation function g(?, 7 )=

<1/1*(7)1/)(7g>, which is found to be g(7,7') = mkal e Mt where
R=17 -7

27 h? R
(see Tinkham p. 300). The typical size of the fluctuation is

on the order of the GL coherence length above T, with £2, = % and a > 0.

2 Brief Introduction to Time-Dependent Ginzburg-
Landau Theory (TDGL)

Above T, the equilibrium value of the order parameter is zero, ¥y = 0. Any

fluctuation results in a non-zero order parameter, as we assume ¥ = g + 6.

TDGL says that such a fluctuation will relax back to zero exponentially in
dyp

time: ¢ = —Tioz/). The result for the £ = 0 momentum relaxation time is

= 7h _ 3ps—K

SER(T=T) — (=T} (This result is derived for gapless superconductors
by M. Cyrot, Rep. Prog. Phys. 36, 103 (1973).)
Now consider the GL equation corresponding to the free energy expansion given
above,
ar) — 2?:* w21 =0, or after dividing through by «,

&%, v ¢ — 1 = 0. The TDGL generalization of this equation is,

d

G = (1 =€V

Generalize the Fourier transform of the order parameter to a time-dependent
version,

— ?7 7t/‘r . .. . .
Y(T ) =D, Yre’ e~ "/ Tk Putting this into the generalized TDGL equation
yields,

Tk =

TR +sz°£2 . This shows that short wavelength fluctuations will decay more
GL
quickly.

3 Fluctuation Conductivity in TDGL

Tinkham derives the fluctuation conductivity above T, using the Kubo for-
malism. Here we use a simple TDGL argument. In analogy with the Drude
expression for the mean field conductivity, o, = 2T, let’s try,

m

*\2
gflue — % ZZ“‘“’” (|k]?) %, where the factor of 2 comes from the fact that
Y2 decays twice as fast as .
Substituting in the results above yields,

* 2
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in to an integral) depends on the dimensionality d of the system.

The outcome of the sum (turned



The results are,

o _flue _ 2 T \1/2 1/4  This approximation
d=3 055" = peimy (7om) ' % {1/32 Kubo
where we write a1 (T) = £61.(0)/ 727 -

6. fluc 2, T 1/8  This approximation
d=2: O'QDqC_E(T_iTC) {1/16 Kubo

where t is the film thickness.

o flue &, T \3/2¢6L(0) 1/8 This approximation
d=1: oy = 5 (727?255 x {ﬁ/lﬁ Kubo
where A, is the cross sectional area of the 1D wire.

Note that in all cases the scale of the fluctuation conductivity is set by
the quantum of conductance % = 243.3uS. Alternatively one can write e% =
4.11k8.

The dc fluctuation conductivity diverges at T, more strongly in lower dimen-

sionality as
fluce 1
9ap X T_THaa/z-

The class web site shows fluctuation conductivity data from 1 and 2-dimensional
materials.

4 The Kosterlitz-Thouless Phase Transition for
2D Superconductors

One does not have true long-range order (LRO) in 1 or 2 dimensions. The
3D BCS ground state is a coherent state of Cooper pairs that maintains phase
coherence over effectively infinite distance. In lower dimensions, the phase co-
herence is less strong. This is quantified by the two-point correlation function
for the GL order parameter. In 3D one has (¢)*(7 )i (7)) ~ constant as
|ﬁ| = |7 — 7’| = oo. Above T, one finds,

(" (T)P(T7)) ~ e RIEN,

In 2D at low temperature one finds, (¥*(7)ih(7")) ~ %. This difference
between the exponential decay above T, to a power-law decay at low temper-
atures implies a phase transition. This is the famous “KT” transition that is
seen in 2D Coulomb gases and in vortices in thin films of superfluid  He. The
original reference is J. Phys. C 6, 181 (1973).

The theory examines the lowest energy excitations out of the ground state.
Individual vortices have an energy that scales logarithmically with the size of the
sample. Bound Vortex/Anti-vortex (V/AV) pairs have a much smaller energy,
hence they dominate the low temperature properties. As temperature increases,
there is an entropic advantage to de-pairing the V/AV pairs and creating un-



bound free vortices. This precipitates the KT transition at Txr. Below Tk
there is zero resistance in the limit of current going to zero. In other words the
critical current is zero! Above Tkt there is finite resistance even in the limit as
the current goes to zero.

5 KT in 2D Superconductors: Vortex and V/AV
Energies

Vortices in 2D superconductors are similar to those discussed before in 3D su-
perconductors except for the tails. Instead of having the currents falling off
exponentially with distance for » > XA in 3D, one instead has a surface current
given by,

2
?S(r) i {%Od/; r<< 2A§/d
See the paper by Pearl, Appl. Phys. Lett. 5, 65 (1964). The key things to note
are the 1/r? drop-off of the surface currents with distance, and the crossover
length scale, called the perpendicular penetration depth A\, = 2A\?/d, where d is
the film thickness. The crossover length scale can be macroscopic in size in low
carrier density and/or disordered superconducting films of small (nm) thickness.
Thus the 1/r “core” of the vortices can extend over macroscopic distances! The
vortices now act like Coulomb charges interacting in a 2D metal.

The energy of a free vortex can be calculated by ignoring the vortex core
(GL k — 00) and considering only the kinetic energy of the currents as,

Wi = mn%,p :L* In £ ~, where nj,, = nsL is the 2D superfluid density, n is
the 3D superﬁuld dens1ty, L is the length of the vortex (on the order of the
film thickness), ro is the microscopic length scale where the current density ap-
proaches the de-pairing value (we expect 7o ~ 1), and R is the sample size,
where it is assumed that A is much greater than the sample size. The energy
of a single isolated vortex scales with the system size, making it very expensive!

Contrast this with the case of a V/AV pair at some distance r apart. Far
away (R >> r) the flow fields of the two vortices cancel to good approximation,
making the object appear “neutral” from far away. The currents are strong only
within r, giving rise to a total energy of just,

Wy = 271'718 9D Z* In - -
Because W2 << W1 the V/AV excitations are the dominant excitations at low
temperature in the 2D superconductor.



